Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells

نویسندگان

  • Jonathan W. Song
  • Stephen P. Cavnar
  • Ann C. Walker
  • Kathryn E. Luker
  • Mudit Gupta
  • Yi-Chung Tung
  • Gary D. Luker
  • Shuichi Takayama
چکیده

BACKGROUND The ability to properly model intravascular steps in metastasis is essential in identifying key physical, cellular, and molecular determinants that can be targeted therapeutically to prevent metastatic disease. Research on the vascular microenvironment has been hindered by challenges in studying this compartment in metastasis under conditions that reproduce in vivo physiology while allowing facile experimental manipulation. METHODOLOGY/PRINCIPAL FINDINGS We present a microfluidic vasculature system to model interactions between circulating breast cancer cells with microvascular endothelium at potential sites of metastasis. The microfluidic vasculature produces spatially-restricted stimulation from the basal side of the endothelium that models both organ-specific localization and polarization of chemokines and many other signaling molecules under variable flow conditions. We used this microfluidic system to produce site-specific stimulation of microvascular endothelium with CXCL12, a chemokine strongly implicated in metastasis. CONCLUSIONS/SIGNIFICANCE When added from the basal side, CXCL12 acts through receptor CXCR4 on endothelium to promote adhesion of circulating breast cancer cells, independent of CXCL12 receptors CXCR4 or CXCR7 on tumor cells. These studies suggest that targeting CXCL12-CXCR4 signaling in endothelium may limit metastases in breast and other cancers and highlight the unique capabilities of our microfluidic device to advance studies of the intravascular microenvironment in metastasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro Study of Cancer Cell Extravasation in Microfluidic Platform

Cancer metastases arise from the cancer cells that disseminate from the primary tumor, intravasate into the vascular system and eventually transmigrate across the endothelium into to a secondary site through a process of extravasation. Microfluidic systems have a major advantage in studying cancer extravasation since they can mimic aspects of the 3D in vivo situation in a controlled environment...

متن کامل

Adhesion of nonmetastatic and highly metastatic breast cancer cells to endothelial cells exposed to shear stress.

The mechanical stimulus of shear stress has to date been neglected when studying the adhesion of cancer cells to the endothelium. Confluent monolayers of endothelial cells were subjected to either 4 or 15 hours of arterial shear stress. Adhesion of nonmetastatic (MCF-7) and highly metastatic (MDA-MB-435) human breast cancer cells was then quantified using a detachment assay carried out inside t...

متن کامل

A Microfluidic Model to Study the Metastatic Cascade: from Adhesion to Migration

This paper presents a microfluidic model for studying the sequential steps of the cancer extravasation process, in which cancer cells exit capillaries and enter organs. We demonstrate the functionality of this model by co-culturing and observing the adhesion of SK-Mel-28 (Malignant Melanoma) cells to a Human Umbilical Vein Endothelial Cell (HUVEC) monolayer, followed by their migration through ...

متن کامل

Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium.

The two major theories of cancer metastasis, the seed and soil hypothesis and the mechanical trapping theory, view tumor cell adhesion to blood vessel endothelia and cancer cell aggregation as corresponding key components of the metastatic process. Here, we demonstrate in vitro, ex vivo, and in vivo that metastatic breast and prostate carcinoma cells form multicellular homotypic aggregates at t...

متن کامل

at the Sites of Primary Attachment to the Endothelium Intravascular Metastatic Cancer Cell Homotypic Aggregation

The two major theories of cancer metastasis, the seed and soil hypothesis and the mechanical trapping theory, view tumor cell adhesion to blood vessel endothelia and cancer cell aggregation as corresponding key components of the metastatic process. Here, we demonstrate in vitro, ex vivo, and in vivo that metastatic breast and prostate carcinoma cells form multicellular homotypic aggregates at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009